DUDK-KL 70-1457

SOVIET PHYSICS - SOLID STATE

VOL. 12, NO. 1

MAGNETIC SUBLATTICE INVERSION IN UNIAXIALLY COMPRESSED MANGANESE FLUORIDE

K. L. Dudko, V. V. Eremenko, and V. M. Fridman

Physicotechnical Institute of Low Temperatures, Academy of Sciences of the Ukrainian SSR Translated from Fizika Tverdogo Tela, Vol. 12, No. 1, pp. 83-88, January, 1970 Original article submitted July 21, 1969

A study has been made of the effect of uniaxial compression on the critical field for inversion of the magnetic sublattice of antiferromagnetic MnF₂ at T = 4.2°K. The method used allows an external pulsed magnetic field to be established along the symmetry axis of the crystal with an accuracy of $\vartheta \le 5$ ', and comparative measurements to be made of H_c for compressed and free specimens. The minimum width of the transition region close to H_c = 91.7 kOe is ~300 Oe and is doubled when $\vartheta \sim 20$ '. When uniaxial compression is applied along the four-fold axis the transition region becomes wider, with H_c growing almost linearly with pressure, such that $(1/H_c)(dH_c/dp) = 2.9 \cdot 10^{-12} \text{ cm}^2/\text{dyn}$. The magnitude of the effect is in agreement with the size of the magnetostriction jump in the critical field, measured earlier. An analysis of the contributions of magnetic-dipole coupling and classical magnetostriction shows that part of the effect is due to the dependence of the exchange integrals J_{12} between ions of opposite sublattices on the interatomic distances, where $-(1/\chi_{\perp})(d\chi_{\perp}/dp) = (1/J_{12})(dJ_{12}/dp) = 1.9 \cdot 10^{-12} \text{ cm}^2/\text{dyn}$.

Molecular field theory has established [1] a simple link between the magnetic susceptibility χ_{1} of an antiferromagnet measured in sufficiently strong fields at low temperatures, and the intersublattice exchange integral J₁₂. From this it follows that the relationship between J_{12} and the interatomic distances can be reliably determined by measuring how χ_{\perp} is influenced by the external pressure. However, attempts at measurement come up against the difficulty of detecting small increments χ_{\perp} (p) against a background of large χ_{\perp} values, which is scarcely feasible at the accuracy level of traditional methods. The problem can be resolved, however, through a study of the pressure dependence of the critical field for inversion of the magnetic sublattice H_c, since the field strength can be measured quite accurately. In fact at low temperatures H_c can be written in the form

$$H_{e} = \sqrt{\frac{K}{\chi_{\perp}}}, \qquad (1)$$

where K is the anisotropy constant. Since it is often possible to calculate the relationship between K and the pressure, by making an experimental study of H_c we can also determine the sought-for $\chi_{\perp}(p)$ relationship.

1. MEASUREMENT OF THE CRITICAL FIELD

The inversion field of the MnF_2 magnetic sublattice is equal to $H_C \simeq 95$ kOe [2]. A magnetic field of this value can be obtained without difficulty under pulsed conditions. In the present investigation a pulsed field was developed in a cooled multiturn solenoid (internal diameter 25 mm, length 100 mm), which provided a high, uniform field within the specimen. When the capacitor bank was discharged through the solenoid, with a total charge energy of up to 75 kJ, a magnetic field pulse (H) was created in the solenoid which reached its maximum value (up to 300 kOe) in 7.5 $\cdot 10^{-3}$ sec. A field

